
Probabilistic UML Statecharts

for Specification and Verification

a case study

David N. Jansen

Universiteit Twente, Information Systems Group.
Postbus 217, 7500 AE Enschede, The Netherlands.

dnjansen@cs.utwente.nl

Abstract. This paper introduces a probabilistic extension of UML state-
charts. A requirements-level semantics of statecharts is extended to in-
clude probabilistic elements. Desired properties for probabilistic state-
charts are expressed in the probabilistic logic PCTL, and verified using
the model checker Prism. The extension simplifies the verification of
critical systems with probabilistic elements, e. g. fault-tolerant systems.
The extension is illustrated using a case study: a gambling machine.
The theory behind this extension is explained in detail in a paper pub-
lished recently [9]; this article concentrates on the case study.

1 Introduction

The UML hardly needs any justification at this conference. It is being used to
describe more and more systems, and an increasing number of engineers get used
to it. I believe that the UML will be used even in domains it was never designed
for; accordingly, it is not far fetched to predict that the following years shall see
substantial efforts to extend the UML towards soft real-time, fault-tolerance,
quality of service and the like. First work in this direction has been undertaken,
e. g., in [2, 5, 10, 12].

One of the principal modelling paradigms needed to express such aspects is
the concept of probability, allowing one to quantitatively describe the randomness
the system is exposed to, the randomness the system itself exhibits, or both.

We have defined an extension of statecharts with probability to describe
the randomness the system itself exhibits and call the extended formalism P-
statecharts. They can be used to describe, e. g., dependability aspects, fault-
tolerance, or also randomised algorithms. Furthermore, probability is an ab-
straction means: it allows one to hide data dependencies by just representing
the likelihood of particular branches to be taken.

Our extension of statecharts is coupled to a formal statechart semantics. This
allows for formal verification of a behaviour specified by a number of statecharts,
ensuring that the system has some desired properties. Formal verification is one
way to minimize the risk that some critical system malfunctions and causes loss
of life or property. We have chosen the requirements-level semantics of Eshuis and



Wieringa [4], which is based on the semantics by Damm et al. [3], because it is
simple and close to the most frequently used semantics for UML. Requirements-
level semantics mostly use the perfect technology assumption, which abstracts
from limitations (in speed and memory) imposed by an implementation. A de-
tailed justification of this semantics and comparisons to other semantics can be
found in [4]. The setup of our probabilistic extension, however, is independent
from the UML basis we take. This means that other formal statechart semantics
can equally well be enhanced with a similar probabilistic extension.

Model checking is a formal technique which is relatively easy to use (com-
pared to other formal techniques), and as such, it has been used successfully in
several projects. Model checking compares the behaviour of (a model of) a system
to desired properties or requirements to that system. Recently, model checking
has been extended to probabilistic systems [1, 11]. With our formal P-statechart
semantics, we can apply probabilistic model checking to a finite collection of
P-statecharts. Using this technique, we can automatically check properties like:
“The probability that a system crashes within 130 steps without ever visiting
certain states is at most 10−5.”

This article bases the presentation of P-statecharts on a case study. I describe
the software in a so-called fruit machine, a kind of gambling machine. A fruit
machine can be seen as a performance-critical system because there are several
legal requirements on it, e. g., requirements on the average wins and losses: a
manufacturer is required to show that its product meets the legal requirements
by means of experimentation or calculation (i. e., formal verification). Formal
verification, in this case, assures that the manufacturer will not lose the invest-
ment to develop a new gambling machine during legal approval. The example
will show the advantages of P-statecharts over a formalism without hierarchy or
parallelism.

Besides probabilistic choice, a system may also contain nondeterministic be-
haviour, e. g., where the probability distribution between several behaviours is
unknown, depends on external factors, or is deliberately left unspecified. P-
statecharts allow to model both probabilistic and nondeterministic behaviours.

Organisation of the paper. Section 2 introduces syntax and informal semantics of
P-statecharts. Section 3 presents the case study. Section 4 describes probabilistic
model checking, the property language used and how I have applied this to the
case. Section 5 concludes the article.

Acknowledgements. I have had many fruitful discussions with Joost-Pieter Ka-
toen and Holger Hermanns; Roel Wieringa has commented on an earlier version
of this paper. This explains why I sometimes write “we”.

2 P-statecharts

This section gives an informal introduction to P-statecharts. For a formal defi-
nition and the formal semantics, see our article [9].
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Fig. 1. Example P-statechart: unreliable, but fair coin

Statecharts are a graphic language introduced by Harel [7] to describe the be-
haviour of some system or component. They have provisions for state refinement
(hierarchy) and parallelism of several subcomponents in the system. Therefore,
a system’s state (also called a configuration) may consist of several states in the
statechart (also called nodes). Possible transitions are indicated by edges from
one set of states to another; when a transition is taken, a part or all of the
configuration may change.

P-statecharts look like a simple extension of the statechart syntax: instead
of simple edges, one draws P-edges, where the action and the target depend on
the outcome of a probabilistic experiment. A traditional edge can be seen as a
P-edge where a single outcome gets probability 1.

A P-edge with a non-trivial probability distribution is drawn in two parts:

first an arrow with event and guard
e[g]
−−→ that points to a symbol P© (a so-called

P-pseudonode), then several arrows emanating from the P-pseudonode, each with

a probability and an action set
p/A
−−→. This notation is inspired by C-pseudonodes

C©, used for case selection purposes e. g., in [8].

A simple example is given in Fig. 1. It depicts a P-statechart which shows
the behaviour when playing with an unreliable, but fair coin: the event “toss”
may or may not be ignored. If the system reacts, it outputs “heads” or “tails”,
each with 50 % chance. If the output is heads, the system stops playing. It
is unspecified how (un)reliable the system is: the choice between ignoring and
reacting is nondeterministic.

Formally, a P-statechart is a quadruple, consisting of a set of nodes Nodes ,
a set of events Events , a set of variables, and a set of P-edges. A P-edge is a
tuple (X, e, g, P ), where X ⊆ Nodes is a non-empty set of source state nodes,
e ∈ Events is an event, g is a guard (a boolean combination of expressions over
the variables), and P : P(Actions)×P(Nodes) → [0, 1] is a probability measure.
(The set Actions contains the possible actions, which consist of sending events
to other P-statecharts and assignments to variables.) The function P can be
considered as a hyperedge with multiple possible targets (A, Y ). A target is an
action set A ⊂ Actions together with a non-empty set Y of successor nodes.
Once the P-edge is triggered by event e and guard g holds in node(s) X , a target
(A, Y ) is selected with probability P (A, Y ).
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Fig. 2. Example: consistency depends on the chosen target

2.1 Semantics

We have chosen to extend the requirements-level semantics of Eshuis and Wie-
ringa [4] to a probabilistic semantics. In a similar way, one could extend other
semantics to include probabilistic elements.

A system consists of a finite collection of P-statecharts. The behaviour of a
P-statechart can be described intuitively as follows. The statechart is always in
some state or configuration (which consists of one or several nodes, as in tradi-
tional statechart semantics). A P-edge is taken if the P-statechart is in the source
node(s), the event of the edge happens and its guard holds. Then, the system
chooses one of the possible results (probabilistically and nondeterministically); it
leaves the source nodes, executes the chosen action and enters the chosen target
nodes of the P-edge. More than one edge may be taken simultaneously, if the
event triggers several nonconflicting P-edges.

Some aspects of the formal semantics. We have defined a formal semantics of
a fixed finite collection of P-statecharts in terms of a Markov decision process
(MDP). A MDP is a structure that allows for both probabilistic and nondeter-
ministic elements in a transition. The model checker Prism [11] supports MDPs
as an input language.

The interplay between probabilistic and nondeterministic elements has to be
designed carefully. The P-statechart in Fig. 2 describes a system which reacts to
an event e in two independent components, of which one causes an error with
probability 1

4 . The transition A → Error is inconsistent with B → D. But whether
these transitions become both enabled depends on the probabilistic choice. This
forces us to resolve the probabilism prior to nondeterministic choice between
inconsistent transitions. This is done by introducing intermediate states in the
MDP where necessary.

3 Case study: a fruit machine

The following case study illustrates the definition and use of P-statecharts: A
fruit machine contains three reels that show fruit symbols. When the user starts
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Fig. 3. Collaboration diagram for a typical game

Combination Prize
reel 1 reel 2 reel 3

bar bar bar 10
cherry cherry cherry 5
grapes grapes grapes 5

? bar bar 5
cherry ? cherry 2
grapes grapes ? 2

? ? bar 2
? ? cherry 1

Table 1. Rewards for specific game results

a game, the reels spin until some timeout. If the visible parts of the reels show
some specific combination of symbols (e. g., three times cherry), the player gets
a prize after pressing the “prize” button. For simplicity, I do not consider the
display.

The fruit machine contains a combination of probabilistic and nondeterminis-
tic elements; for example, the outcome of a single reel is probabilistic, but which
of the reels stops first is nondeterministic.

The system contains two important objects: the reels and prizes object de-
scribes the reels’ outcome and which prize the user gets; the game controller

describes the sequence of games on a higher level. In addition, there is a cash
box interface.

A typical interaction of the objects is shown in the collaboration diagram
in Fig. 3. It depicts the following scenario: a user enters a single coin and then
presses the start button. The user waits until the reels stop, then presses the
“prize” button to get his prize.

The statechart for the reels and prizes object is shown in Fig. 4. Here, the
statechart syntax allows us to model the three reels independently; it is not
necessary to draw all possible combinations explicitly. This enables engineers
to create models of complex systems. Note that the state of the reels is only
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Fig. 4. The reels and prizes’ behaviour. To avoid cluttering, some P-edge labels have
been omitted and some P-edges are drawn dashed or dotted.
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Fig. 5. The game controller’s behaviour

Ready
to pay

/ money := 200

enter coin /
send game controller.credited ;
money := money + 1

pay(n) /
send user.return money(n);
money := money − n

Fig. 6. The cash box interface’s behaviour

registered as long as it is needed. I use the UML priority scheme from [8]: smaller
scopes have higher priority. This implies, e. g., that P-edges to subnodes of triple
winning have priority over P-edges to subnodes of double winning, and so, the
highest prize is found and paid. Some P-edge labels have been omitted: each
edge that leads to a prize has the label prize / send cashbox.pay(amount) with
the appropriate amount from Table 1 filled in. I have shown one example.

The statecharts of the other objects are shown in Figs. 5 and 6.

4 Model checking

I have composed the above statecharts with a simple user simulation and con-
structed the MDP which is their semantics. The MDP has been fed into the
model checker Prism [11], a probabilistic model checker for MDPs and similar
structures.

I had to put a bound on the integer variable which represents the stock of
return money (as in a real automaton, there is only room for a finite amount
of coins). The automaton starts with 200 coins. I have added a game counter
to express properties for a series of games. After some simplifications, the MDP
had 1 789057 reachable states.

4.1 Property language

As a property specification language, we propose to use the probabilistic branch-
ing time logic PCTL, which extends CTL with probabilistic features. PCTL was
first designed for fully probabilistic systems without nondeterminism [6]. We use
the interpretation of PCTL over MDPs defined by Baier and Kwiatkowska [1,
11]. PCTL allows one to express properties such as:

Ψ The probability that a system crashes within 130 steps without ever visi-
ting certain states is at most 10−5.



In order to decide these properties, the nondeterminism is resolved by means of
schedulers (also known as adversaries or policies). Here, we restrict ourselves to
the fragment of PCTL for which actual model-checking tool-support is available;
i. e., we only consider properties interpreted for all fair schedulers.

Syntax and informal semantics. The syntax of PCTL is given by the following
grammar, where a denotes an atomic proposition, v denotes a variable, k ∈ Z

an integer constant, p ∈ [0, 1] denotes a probability and w is a placeholder for a
comparison operator <,≤,=,≥, >:

ϕ, ψ ::= true | a | v ≤ k | v ≥ k | ϕ ∧ ψ | ¬ϕ | Pwp[ϕ U≤k ψ] | Pwp[ϕ U ψ]

The meaning of true, comparisons, conjunction and negation is standard. For-
mula Pwp[ϕ U≤k ψ] holds in a state if the probability of the set of paths that
reach a ψ-state in at most k steps while passing only through ϕ-states is w p.
Pwp[ϕ U ψ] has the same meaning, but does not put a bound on the num-
ber of steps needed to reach the ψ-state. (A formal interpretation on MDPs
is omitted here, and can be found in [1].) Property Ψ , e. g., is expressed as
P≤10−5 [¬ϕ U≤130 crash ] where ϕ describes the states that should be avoided.

Schedulers and fair schedulers. The above explanation is ambiguous if nondeter-
minism is present, because the probability will (in general) depend on the resolu-
tion of nondeterminism. Non-determinism is resolved by schedulers. A scheduler

selects, for each initial fragment of a path through the MDP, one of the possible
continuations. It does not resolve probabilistic choices. Several types of sched-
ulers do exist, see [1]. Here, we consider fair schedulers. A fair scheduler only
selects fair paths. A path π is fair if, for each state s that appears infinitely
often in π, each of the possible nondeterministic continuations in s also appears
infinitely often. Prism checks whether a PCTL-formulas holds for all fair sched-
ulers.

4.2 Desired properties checked

I have checked the MDP with some properties which resemble legal requirements
to the automaton. Most of these requirements are conditions on the allowed
minimal, maximal, or mean loss of the player. I have added a variable gamecount
to the model to help in formulating requirements on a series of games. I have
checked the following properties:

The player doesn’t lose too much. I state this as: In 30 games, the player loses
at most 70 % with probability at least 0.9. (A single game costs 1 coin, so the
maximum loss is 30 coins.)

P≥0.9[gamecount < 30 U (gamecount = 30 ∧ money ≤ 200 + 0.7 · 30]

Remember that money represents the amount of money in the automaton; a loss
for the player makes money rise. Prism reported the property holds in 4’ 20”.



The player doesn’t win too much. I state this as: In 30 games, the player wins
less than 10 coins with probability greater than 0.99.

P≥0.99[gamecount < 30 U (gamecount = 30 ∧ money > 200− 10)]

Also here, Prism reported the property holds in 5’ 47”.

The median loss is less than 50 %. This is formulated as: In 30 games, the
probability to lose 15 or more coins is less than 50 %.

P<0.5[gamecount < 30 U (gamecount = 30 ∧ money ≥ 200 + 15)]

Prism reported that the property holds in 4’ 45”.

The stock of coins is large enough. This is not a legal requirement, but a practical
one: how large should the stock of return money be that the chance a prize cannot
be paid is less than 10−20? Let’s check whether it is large enough:

P≤10−20 [true U money < 1]

Prism reported that the property is false. Experimentation with some other
probabilities led to the conclusion that the probability that a prize cannot be
paid some time is quite high. However, when I assume that the coins are refilled
regularly (say, every 1000 steps), it is enough to prove

P≤10−20 [true U≤1000 money < 1]

which is true. Prism needed 16’ 31” to check this; the check is slow because the
tool unfolds the system to 1000 steps.

Timed requirements. Some of the legal requirements are real-time properties,
e. g.: a game must last at least 4 seconds on average. Our modelling language
does not include real-time, so it is impossible to check this requirement.

5 Conclusion

Contributions. This article is centered around a case study of a probabilistic
system, a gambling machine. It illustrates our extension of a statechart dialect
with probabilistic features [9]. This extension has a formal semantics, based on
the semantics of [4], which uses Markov decision processes as semantic model.
The case study shows how to use the probabilistic logic PCTL to specify and
check desired properties of a probabilistic system.



Observations. The fruit machine example profited from the fact that the three
reels could be modelled independently, using hierarchy and parallelism; the user
needs not draw all possible combinations of reel outcomes explicitly. This makes
P-statecharts a powerful language, suitable to describe complex probabilistic
systems.

I think that probabilistic statecharts are easy to learn for people who know
statecharts, as there is only one simple syntactic extension for non-trivial proba-
bilistic edges. As statecharts are known widely among software engineers, it may
simplify the use of probabilistic model checking: instead of a completely different
formalism, an engineer can use an easy extension of a known language to create
the model.

In the formal semantics for this simple-looking extension, one has to find
a delicate balance between probabilism and nondeterminism. I have illustrated
this by the example P-statechart in Fig. 2. (In the case study, I didn’t use edges
where consistency depends on the resolution of probabilistic choices. In this case,
a simpler extension might be enough; but whether a simplification excludes other
applications, needs further study.)

Future work. We plan to continue our research in two directions: On one hand,
we would like to incorporate real-time elements into the formalism. This includes
a stochastic extension, where the time between several events is distributed ac-
cording to a probability distribution.

On the other hand, we would like to consider environmental randomness.
This is randomness introduced from the outside, because users or other external
entities behave according to some probability distribution. For example, users
may have preferences; or sensors may fail with a specific error rate.
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